首页
登录
职称英语
In April 1995, a young Chinese chemistry student at Beijing University lay dy
In April 1995, a young Chinese chemistry student at Beijing University lay dy
游客
2023-12-17
25
管理
问题
In April 1995, a young Chinese chemistry student at Beijing University lay dying in a Beijing hospital. She was in a coma, and although her doctors had performed numerous tests, they could not discover what was killing her. In desperation, a student friend posted an SOS describing her symptoms to several medical bulletin boards and mailing lists on the Intermet. Around the world, doctors who regularly checked these electronic bulletin boards and lists responded immediately.
In Washington D. C., Do, John Aldis, a physician with the U.S. Department of State, saw the message from China. Using the Internet, he forwarded the message to colleagues in America. Soon an international group of doctors joined the e-mail discussion. A diagnosis emerged -- the woman might have been poisoned with thallium, a metal resembling lead. A Beijing laboratory confirmed this diagnosis -- the thallium concentration in her body was as much as 1,000 times normal. More e-mail communication followed, as treatment was suggested and then adjusted. The woman slowly began to recover. Well over a year later, the international medical community was still keeping tabs on her condition through the electronic medium that saved her life.
It’s 11: 30 p. m., you’re in San Francisco on business, and you want to check for messages at your office in Virginia. First you dial in and get your voice mail. Next you plug your portable computer into the hotel-room telephone jack, hit a few keys, and pick up e-mail from a potential client in South Africa, your sister in London, and a business associate in Detroit. Before writing your response, you do a quick bit of search on the Internet, tracking down the name of the online news group you had mentioned to the roan in Detroit and the title of a book you wanted to recommend to your sister. A few more keystrokes and in moments your electronic letters have reached London and Detroit. Then, knowing that the time difference means the next workday has begun in South Africa, you call there without a second thought.
These stories reflect society’s increasing reliance on system of global communication that can link you equally easily with someone in the next town or halfway around the world. The expanded telephone-line capacity that has allowed the growth of these forms of communication is a recent phenomenon. The United States has enjoyed domestic telephone service for more than a century, but overseas telephone calls were difficult until relatively recently. For a number of years after World War Ⅱ, calls to Europe or Asia relied on short-wave radio signals. It sometimes took an operator hours to set up a 3-minute call, and if you got through, the connection was often noisy.
In 1956, the first transatlantic copper wire cable allowed simultaneous transmission of 36 telephone conversations -- a cause for celebration then, a small number today. Other cables followed; by the early 1960s, overseas telephone calls had reached 5 million per year. Then came satellite communication in the middle 1960s, and by 1980, the telephone system carried some 200 million overseas calls per year. But as demands on the telecommunication system continued to increase, the limitations of current technology became apparent. Then, in 1988, the first transatlantic fiberoptic cable was laid, and the "information superhighway" was on its way to becoming reality.
Optical fibers form the backbone of the global telecommunication system stronger, length for length, than steel -- were designed to carry the vast amounts of data that can be transmitted via a relatively new form of light-tightly focused laser. Together, lasers and optical fibers have dramatically increased the capacity of the international telephone system. A typical fiber-optic cable made up of 100 or more such fibers can carry more than 40,000 voice channels. With equally striking improvements in computing, the new communication technology has fueled the exponential growth of the phenomenon known as the Internet. [br] The information superhighway came into existence because of ______.
选项
A、copper wire cables
B、satellite communication
C、optical fibers
D、laser and optical fibers
答案
D
解析
该题问:信息高速公路成为现实是因为什么?A项意为“铜丝电缆”,这在文中提到是在第五段In 1956, the first transatlantic Copper Wire cable allowed simultaneous transmission of 36 telephone conversations — a cause for celebration then, a small number today,那时信息高速公路还未存在,因此A项不正确。B项意为“卫星通讯”,这在文中提到也是在第五段Then came satellite communication in the middle l960s,那个时候信息高速公路也未存在。C项意为“视觉纤维”,这在文中提到也是在第五段Then in 1988,the first transatlantic fiber-optic cable was laid, and the "information superhighway" was on its way to becoming reality, 此句写的时间是on its way,所以C项也不正确。D项意为“激光与视觉纤维”,这在本文中的最后一段的第一句提到,因此D项为正确选项。
转载请注明原文地址:https://tihaiku.com/zcyy/3280613.html
相关试题推荐
ItispossibleforstudentstoobtainadvanceddegreesinEnglishwhileknowi
ItispossibleforstudentstoobtainadvanceddegreesinEnglishwhileknowi
ItispossibleforstudentstoobtainadvanceddegreesinEnglishwhileknowi
ItispossibleforstudentstoobtainadvanceddegreesinEnglishwhileknowi
HowtoReadEffectivelyManystudentstendtoreadbook
HowtoReadEffectivelyManystudentstendtoreadbook
HowtoReadEffectivelyManystudentstendtoreadbook
HowtoReadEffectivelyManystudentstendtoreadbook
HowtoReadEffectivelyManystudentstendtoreadbook
AccordingtoAllan,whowilllookaftertheinterestofforeignstudentsatuniv
随机试题
Therewasatimewhenparentswhowantedaneducationalpresentforthe
Amancannotsmilelikeachild,______achildsmileswithhiseyes,whileaman
风险管理目标可以分以下()视角进行制定。A.战略目标 B.经营目标 C.报告
中途站的站距要合理选择,平均站距宜在( )m范围内。A.300~600 B.
关于无障碍设计的说法,正确的是( )。A.新建项目出口场地有限时,可采用升降平
()arethoseprogramsthathelpfindthe
( )不属于经济结构间接对商业银行的影响。A.国民经济的增长速度 B.国民经
证券公司介绍()开户的,应当将其期货账户信息报所在地中国证监会派出机构备案。A
水利水电工程施工进度计划常用的表达方法有()。A.横道图 B.工程进度曲线
男,60岁。每于上楼时山现胸闷3天,含服硝酸甘油2分钟可缓解.8小时前再次山现
最新回复
(
0
)