首页
登录
职称英语
Early in the film "A Beautiful Mind", the mathematician John Nash is seen si
Early in the film "A Beautiful Mind", the mathematician John Nash is seen si
游客
2023-12-14
78
管理
问题
Early in the film "A Beautiful Mind", the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go, an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. To date, no computer has been able to achieve a skill level beyond that of the casual player.
The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguingly, intuition.
Along with intuition, pattern recognition is a large part of the game. While computers are good at crunching numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess game and see if there’s some major issue," he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
"Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300,000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By mid-game, most Go programs can evaluate only a couple of dozen positions each second," said Anders Kierulf, who wrote a program called SmartGo.
In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30,000 years to look as far ahead as Deep Blue can with chess in three Seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourage programmers to advance basic work in artificial intelligence.
For that reason, Fotland said, "writing a strong Go program will teach us more about making computers think like people than writing a strong chess program. " [br] Which of the following elements does NOT contribute to the complexity of programming a computer to play Go?
选项
A、Playing Go involves decision-making.
B、Playing Go involves pattern-matching.
C、The limitation of computer’s processing speed.
D、There exist too many possibilities in each mov
答案
A
解析
A选项错在虽然人工智能涉及到了决策制定,但文中并没有提到是这一点使围棋程序编写尤其困难,以常识而言,象棋程序中也涉及决策制定。而其他选项在下文都有特别提到,以强调围棋程序编写之难。
转载请注明原文地址:https://tihaiku.com/zcyy/3272176.html
相关试题推荐
Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseensi
PatriciaFleetisdistinguishedwithherbeautifulvoicewhichwonherthenatio
WhichareaiscalledtheGardenofEnglandandisfamousforbeautifulblossoms
Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseensi
Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseensi
Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseensi
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
Tobecalledbeautifulisthoughttonamesomethingessentialtowomen’scha
随机试题
ThecapitalofWalesisA、Edinburgh.B、Cardiff.C、Manchester.D、London.B本题考查英国地理
Completetheformbelow.WriteNOMORETHANTHREEWORDSAND/ORNUMBERSforeach
医疗机构应当对传染病病人或者疑似传染病病人提供A.医疗救护 B.现场救援 C
A.普通光学显微镜B.相差显微镜C.偏振光显微镜D.荧光显微镜E.透射电子显微镜
Thechangeinthatvillagewasmiraculou
参苓白术散适宜治疗A.脾胃虚弱导致的水肿 B.脾胃虚寒的胃痛 C.脾胃虚弱的
关于商品生产过程中抽象劳动的说法,正确的是()。A.抽象劳动创造商品的使用价值
下列各项中,表述正确的有( )。A.企业出租包装物的成本应通过“主营业务成本”核
无限大真空中一半径为a的带电导体球,所带体电荷在球内均匀分布,体电荷总量为q。球
对脂肪消化最重要的酶存在于A.唾液 B.胰液 C.胃液 D.胆汁 E.小
最新回复
(
0
)