首页
登录
职称英语
Automobiles VS Public Transport Public transport plays a
Automobiles VS Public Transport Public transport plays a
游客
2023-07-29
25
管理
问题
Automobiles VS Public Transport
Public transport plays a central role in any efficient urban transport system in developing countries, where at least 16 cities are expected to have more than 12 million people each by the end of this decade, failing to give priority to public transport would be disastrous.
The term "public transport" covers many different types of vehicles, but most commonly refers to buses and trains. Rail services fall into four major categories: rapid rail (also called the underground, tube, metro, or subway), which operates on exclusive rights-of-way (优先行驶权) in tunnels or on elevated tracks; trams, which move with other traffic on regular streets; light rail, which is a quieter, more modern version of trams that can run either on exclusive rights-of-way or with other traffic: and suburban or regional trains, which connect a city with surrounding areas.
The recent trend in many cities is toward light rail over "heavy" rapid-rail systems. Whereas metros require exclusive rights-of-way, which often means building costly elevated or underground lines and stations, light rail can be built on regular city streets.
The concept of public transport also includes organized car pools, in which several people share the cost of riding together in the same private automobile. For US commuters in areas with inadequate bus and train services, this is the only "public" transport option. But even where other systems are comprehensive, there is vast potential for car pooling; recent research shows that in cities the world over, private cars during commuting hours on average carry just 1.2 1.3 persons per vehicle.
Public transport modes vary in fuel use and emissions and in the space they require, but if carrying reasonable numbers of passengers, they all perform better than single-occupant private cars on each of these counts.
Although energy requirements vary according to the size and design of the vehicle and how many people are on board, buses and trains require far less fuel per passenger for each kilometer of travel. In the United States, for example, a light-rail vehicle needs an estimated 640 BTUs (British Thermal Units, measure of energy consumed) of energy per passenger per kilometer; a city bus would use some 690 BTUs per passenger-kilometer; and a car pool with four occupants 1,140 BTUs. A single-occupant automobile, by contrast, consumes nearly 4,580 BTUs per passenger-kilometer.
The pollution savings from public transport are even more dramatic. Since both rapid and light rail have electric engines, pollution is measured not from the motor exhaust, but from the power plant generating electricity, which is usually located outside the city, where air quality problems are less serious. For typical U.S. commuter routes, rapid rail emits 30 grams of nitrogen oxides for every 100 kilometers each rail passenger travels, compared with 43 grams for light rail, 95 grams for transit buses, and 128 grams for single-occupant automobiles. Public transport’s potential for reducing hydrocarbon (碳氢化合物)and carbon monoxide(一氧化碳)emissions is even greater.
Although diesel buses—especially in developing countries—can be heavy polluters, existing technologies, such as filters, can control their exhaust. Buses can also run on less polluting fuels such as propane (丙烷, used in parts of Europe) and natural gas (used in Brazil and China). Test buses in the Netherlands that run on natural gas are estimated to emit 90 percent less nitrogen oxide and 25 percent less carbon monoxide than diesel engines do.
In addition to reducing fuel consumption and pollution, public transport saves valuable city space. Buses and trains carry more people in each vehicle and, if they operate on their own rights-of-way, can safely run at much higher speeds. In other words, they not only take up less space but also occupy it for a shorter time. Thus, comparing ideal conditions for each mode in one lane of traffic, an underground metro can carry 70,000 passengers past a certain point in one hour, light rail can carry up to 35,000 people, and a bus, just over 30,000. By contrast, a lane of private cars with four occupants each can move only about 8,000 people an hour, and without such car-polling the figure is, of course, far lower.
The availability and use of public transport vary widely in cities around the globe. Since variations in distances and city densities affect the total kilometers of travel, the annual number of trips each person takes by public transport provides a better standard for comparing its importance in various cities. The range of frequency of public transport use is shown in the Table below.
Urban public transport has long been a government priority in Western Europe. All major cities there have high car ownership, but well-developed bus and rail systems are available, and overall public transport typically accounts for between 20 and 30 percent of passenger-kilometers. In recent years, several large cities have stepped up their commitment to public transportation, combining further investments with complementary policies to restrict auto use.
Public transport also plays an important role in urban areas of the Third World. In many cities in Asia, Latin America, and Africa, buses make 50.43 percent of all motorized trips. Buses are sometimes hopelessly overcrowded; it is not uncommon to see several riders clinging to the outside. Yet most Third World cities have lower public transport use per person than those in Western Europe, reflecting the inability of small bus fleets to keep up with population growth. Among the world’s major cities, those in Australia and the United States make the least use of alternatives to the private car. Indeed. Less than 5 percent of U.S. trips are by public transport, but in some cities such as New York City and Chicago, where service is provided extensively, it is used heavily. Indeed, nearly one quarter of the entire country’s public transport trips are in New York City.
Table Dependence on Public Transport in Selected Cities, 1989
Trips: per person per year [br] Car pooling is also a means of public transport.
选项
A、Y
B、N
C、NG
答案
A
解析
从第四段的主题句“The concept of public transport also includes organized car pools, in which several people share the cost of riding together in the same private automobile”及此后的发展句,可知答案是Y。
转载请注明原文地址:https://tihaiku.com/zcyy/2878275.html
相关试题推荐
Nottoomanydecadesagoitseemed"obvious"bothtothegeneralpublicandtos
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
Beforethe20thcenturythehorseprovideddaytodaytransportationintheUnit
随机试题
TheInternetisaninternationalcollectionofcomputernetworksthatallun
Whatisthemainideaofthepassage?[br][originaltext]FedChairJanetYellen
在网络计划优化中,资源有限-工期最短的优化目的在于()。A.通过压缩计算工期
电子巡查系统的线路的形式有()。A.在线巡查系统 B.离线巡查系统 C.复
男性,34岁,自幼伤口易出血不止,逐渐双膝关节疼痛肿胀变形。此次因跌倒后出现右侧
A.发病急骤,高热,抽搐,昏迷,头痛,项强,舌红苔黄 B.发病较急,突然抽搐,
SoilisthesurfacelayeroftheEartht
变电站微机保护的软、硬件设置既要与监控系统相对对立,又要相互协调。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性: A.如
“成交方式”栏应填( ). A.进料对口 B.FOB
最新回复
(
0
)