首页
登录
职称英语
Earthquake Can Scientists Predict Killer Earthquakes?
Earthquake Can Scientists Predict Killer Earthquakes?
游客
2023-07-20
23
管理
问题
Earthquake
Can Scientists Predict Killer Earthquakes?
The date was November 23, 1980. People near Naples, in Southern Italy, felt the earth roll and shake. Earthquake! Suddenly buildings came tumbling down. Cracks appeared in the earth. Within minutes, entire towns were destroyed. Thousands of people were dead. Thousands more were injured.
As rescuers searched through the rubble, many people must have wondered, if only the victims had known ahead of time, many, lives could have been saved.
Actually, an Italian scientist did predict that such a quake would happen. In 1977 Dr. M. Caputo of the Universite Degiles Studi in Rome warned that a large quake would soon strike the east of Naples. Unfortunately, he couldn’t predict the exact time and date of the quake.
Dr. Caputo made his general prediction after talking with scientists at 54 earthquake-monitoring stations throughout Italy. He learned that many earthquakes had recently rocked different areas around Naples. But none had occurred in one particular spot east of Naples for many years. Dr. Caputo felt that the area was long overdue for a large quake. And it was.
Earthquake Strikes in Gap
The quake occurred in a region that Dr. Caputo called a seismic gap. A seismic gap is an area in an active earthquake region where no earthquake or seismic activity has been recorded in a long time. Seismic gaps are located where two large plates in the earth have become stuck.
When the plates slide past each other, they sometimes became locked in place. A similar thing happens when you make a running leap on a sidewalk while wearing sneakers. When you land on both feet, the sneakers grab onto rough surface. Friction tends to hold your feet back while the rest of your body goes forward. You may end up falling flat on your face.
In the case of plates, however, the uneven surfaces between the plates cause the plates to remain locked in place for years. Huge pressure builds up behind each plate. Periodically, a shudder, or tremor, is recorded as some of this energy is released.
Finally, after about 50 years, rock in the seismic gap either suddenly breaks or moves under the great stress. This sudden release of energy sends shock waves through the rock layers above. The ground shakes, sidewalks crack, and buildings tumble. A mighty quake has struck.
Gaps Used to Predict Quakes
Many geologists have used what is called the seismic gap technique to accurately predict earthquakes. The technique was first developed by Soviet earthquake expert Dr. V. Fodotov during his studies of ancient and recent Japanese earthquakes. Dr. Fodotov was marking the location, size, and date of all known quakes in Japan when he noticed a striking pattern.
All major earthquakes were found to occur in only a few isolated spots in Japan. Each of these spots, he noted, experienced a major quake only once every 50 to 60 years. Dr. Fodotov concluded that spots that hadn’t had a quake in more than 50 years were "ripe" for a quake. The Russian scientist named these locations seismic gaps.
In the past several years, geologists from other countries have found seismic gaps in other parts of the world. After making detailed studies of past quakes in these regions, the geologists were able to make an accurate prediction of when a quake would occur.
How Do Animals Know When an Earthquake Is Coming?
Scientists who try to predict earthquakes have gotten some new helpers recently—animals.
That’s right, animals. Scientists have begun to catch on to what farmers have known for thousands of years. Animals often seem to know in advance that an earthquake is coming, and they show their fear by acting in strange ways. Before a Chinese quake in 1975, snakes awoke from their winter sleep early only to freeze to death in the cold air. Cows broke their halters and tried to escape. Chickens refused to enter their coop. All of this unusual behavior, as well as physical changes in the earth, alerted Chinese scientists to the coming quake. They moved people away from the danger zone and saved thousands of lives.
One task for scientists today is to learn exactly which types of animal behavior predict quakes. It’s not an easy job. First of all not every animal reacts to the danger of an earthquake. Just before a California quake in 1977, for example, an Arabian stallion became very nervous and tried to break out of his stall. The horse next to him, however, remained perfectly calm. It’s also difficult at times to tell the difference between normal animal restlessness and "earthquake nerves". A zookeeper once called earthquake researchers to say that his cougar had been acting strangely. It turned out that the cat had an upset stomach.
A second task for scientists is to find out exactly what kind of warnings the animals receive. They know that animals’ sense far more of the world than humans do. Many animals can see, hear, and smell things that people do not even notice. Some can detect tiny changes in air pressure, gravity, or the magnetism of earth. This extra sense probably helps animals predict quakes.
A good example of this occurred with a group of dogs. They were penned up in an area that was being shaken by a series of tiny earthquakes. Several small quakes often come before or after a large one. Before each quake a low booming sound was heard. Each boom caused the dogs to bark wildly. Then the dogs began to bark during a silent period. A scientist who was recording tile quakes looked at his machine. It was acting as though there was a loud noise too. The scientist realized that the dogs had reacted to a booming noise. They also sensed the tiny quake that followed it. The machine recorded both, though humans felt and heard nothing.
In this case there was a machine to monitor what the dogs were sensing. Many times, however, our machines record nothing out of the ordinary, even though animals know a quake is coming. The animals might be sensing something we do measure but do not recognize as a warning. Discovering what animals sense, and learning how they know it is a danger signal, is a job for future scientists. [br] As it is used in paragraph 1the word "cat" refers to a typical______.
选项
A、domestic cat
B、cougar
C、tiger
D、lion
答案
B
解析
细节题。根据十四段最后两句A zookeeper once called earthquake researchers to say that his cougar had been acting strangely.It turned out that the cat had an upset stomach.(一次一个动物园饲养员打电话给地震研究员,说他的美洲狮表现很奇怪.结果是那只“猫”胃口不好),所以这里的cat指的是cougar。这道题的答案是B。
转载请注明原文地址:https://tihaiku.com/zcyy/2852959.html
相关试题推荐
WhilescientistsaresearchingthecauseoftheColumbiadisaster,NASAism
WhilescientistsaresearchingthecauseoftheColumbiadisaster,NASAism
WhilescientistsaresearchingthecauseoftheColumbiadisaster,NASAism
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
Inpolicework,youcanneverpredictthenextcrimeorproblem.Noworking
随机试题
[originaltext]W:Hello.Isthistheregistrationoffice?M:Yes.ThisisHerber
下述人防防火分区划分中,()不准确。A.一般情况下,其不应大于500m2
A.虹膜状或靶形红斑 B.肢端硬性肿胀 C.蝶形红斑 D.环形红斑 E.
发展是解决我国一切问题的基础和关键,发展必须是科学发展,必须坚定不移贯彻____
《国家电网公司变电运维管理规定》各地市公司应将奖惩相关规定制度报本单位人力资源部
某办公楼地下2层,地上45层,建筑高度163米,建筑为玻璃幕墙结构,长100m,
能在紧急状态时统一意志、统一行动,迅速动员社会力量渡过难关的宏观调控手段是(
投资项目决策分析与评价的基本要求包括贯彻落实科学发展观、资料数据准确可靠和()
根据国家发改委《必须招标的工程项目规定》和《必须招标的寄出设施和公用事业项目范围
男性,52岁。有高血压病史,突然出现双下肢无力倒地,随即自行站起,整个过程中意识
最新回复
(
0
)