某汽车加工工厂有两条装配线L1和L2;每条装配线的工位数均为n(Sij,i=1或

考试题库2022-08-02  67

问题 某汽车加工工厂有两条装配线L1和L2;每条装配线的工位数均为n(Sij,i=1或2,j=1,2,..n),两条装配线对应的工位完成同样的加工工作,但是所需要的时间可能不同(aij,i=1或2,j=1,2,... n)。汽车底盘开始到进入两条装配线的时间(e1,e2)以及装配后到结束的时间(X1X2)也可能不相同。从一个工位加工后流到下一个工位需要迁移时间(tij,i=1或2,j=2,n)。现在要以最快的时间完成一辆汽车的装配,求最优的装配路线。分析该问题,发现问题具有最优子结构。以L1为例,除了第一个工位之外,经过第j个工位的最短时间包含了经过L1的第j-1个工位的最短时间或者经过L2的第j-1个工位的最短时间,如式(1)。装配后到结束的最短时间包含离开L1的最短时间或者离开L2的最短时间如式(2)。由于在求解经过L1和L2的第j个工位的最短时间均包含了经过L1的第j-1个工位的最短时间或者经过L2的第j-1个工位的最短时间,该问题具有重复子问题的性质,故采用迭代方法求解。该问题采用的算法设计策略是(62) ,算法的时间复杂度为(63) 。以下是一个装配调度实例,其最短的装配时间为(64) ,装配路线为(65) 。A.O(lgn)B.O(n)C.O(n2)D.O(nlgn)

选项 A.O(lgn)
B.O(n)
C.O(n2)
D.O(nlgn)

答案 B

解析 动态规划算法与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。本题中的时间复杂度为O(n) 。

贪心选择是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

求最短的装配时间与装配路线只需要将选项按照公式带入计算(将图上每条路径上的所有数字相加)可得最短路线为S11→S22→S13 ,时间为21。
转载请注明原文地址:https://tihaiku.com/congyezige/2407918.html

最新回复(0)